منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولDeep Learning Architectures for Hard Character Classification
Recent research indicates that deep learning has achieved noticeably promising results in a wide range of areas such as computer vision, speech recognition and natural language processing. This paper offers an empirical study on the use of deep learning techniques for hard characters recognition on the notMNIST dataset. The MNIST dataset has been widely used for training and testing in the fiel...
متن کاملComparison and Disjoint-occurrence Inequalities for Random-cluster Models
Geoffrey Grimmett Abstra t. A principal technique for studying percolation, (ferromagnetic) Ising, Potts, and random-cluster models is the FKG inequality, which implies certain stochastic comparison inequalities for the associated probability measures. The first result of this paper is a new comparison inequality, proved using an argument developed in Refs. 2, 6, 14, and 21 in order to obtain s...
متن کاملUsing Non-Archimedean DEA Models for Classification of DMUs: A New Algorithm
A new algorithm for classification of DMUs to efficient and inefficient units in data envelopment analysis is presented. This algorithm uses the non-Archimedean Charnes-Cooper-Rhodes[1] (CCR) model. Also, it applies an assurance value for the non-Archimedean using only simple computations on inputs and outputs of DMUs (see [18]). The convergence and efficiency of the ne...
متن کاملImproved Malware Classification through Sensor Fusion Using Disjoint Union
In classifying malware, an open research question is how to combine similar extracted data from program analyzers in such a way that the advantages of the analyzers accrue and the errors are minimized. We propose an approach to fusing multiple program analysis outputs by abstracting the features to a common form and utilizing a disjoint union fusion function. The approach is evaluated in an exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Chemometrics
سال: 2010
ISSN: 0886-9383,1099-128X
DOI: 10.1002/cem.1288